Function will group the data and estimate the frequency of the time stamps, returning 'year', 'quarter', 'month', 'week' or 'day'. You can use it on raw or aggregated data frames
Arguments
- df
data.frame()
ortibble()
Data frame of tibble, can be aggregated or raw- date_field
Date field to be analyzed, by default the first date-like column will be used
Examples
sales %>%
dplyr::mutate(Date = lubridate::floor_date(Date, unit = "month")) %>%
get_frequency()
#> [1] "month"
sales %>%
dplyr::mutate(Date = lubridate::floor_date(Date, unit = "week")) %>%
get_frequency()
#> [1] "week"
sales %>%
dplyr::mutate(Date = lubridate::floor_date(Date, unit = "quarter")) %>%
dplyr::group_by(Region, Date) %>%
dplyr::summarise(Sales = sum(Sales, na.rm = TRUE)) %>%
get_frequency()
#> [1] "quarter"
get_frequency(sales)
#> [1] "day"